CapeSym | ![]() |
Table of Contents |
Accurate material properties are essential to an accurate simulation. Although it is possible to compare the thermal performance of several alternative designs using only approximate material properties for the components and obtain the correct ranking of the designs, accurate quantitative information (such as peak temperature) requires accurate material properties.
The material properties of common pure substances like copper, for instance, are well known. However, properties for many of the materials currently used in electronic devices can be difficult to find. For this reason, CapeSym, Inc. provides an extensive library of material properties for commonly-used materials in the generic templates. These properties and their sources are listed here for reference.
It is suggested that the material properties listed here and supplied with the generic template are reasonable values suitable for the intended uses of SYMMIC. However, users are strongly encouraged to check with their suppliers to see if more accurate values are available for their particular materials, especially for items like greases and epoxies, whose properties vary widely from one product to another.
For each material listed below, the thermal conductivity (k), specific heat (c) and density (rho) are given as a function of temperature (if dependence is known), for the range 200 – 800 K. In some cases the thermal conductivity is a function of direction as well. In that case, values are listed for the three principal directions (i.e. orthotropic values): kx, ky and kz. Note that some orthotropic materials could conceivably be used in several different orientations in a device. The orientation listed corresponds to the one used in the generic template.
Representative surface emissivities are given for some materials, even though emissivity is a property of both the material and the surface finish, and values can range widely. This quantity is used when radiation boundary conditions are selected, otherwise it is not needed. It is the hemispherical total emissivity, which is a dimensionless quantity.
For the fluids, the dynamic viscosity (mu) is also given. Finally, SI units are given here, but those are not the units used in the template. Since the template dimensions are given in units of microns (μm), or 1x10-6 meters, the units required by SYMMIC are: T (K), k (W/μm-K), c (J/mg-K), rho (mg/μm3), and mu (mg/μm-s). Conversion between the two units systems is as follows: 1 (W/m-K) = 1x10-6 (W/μm-K), 1 (J/kg-K) = 1x10-6 (J/mg-K), 1 (kg/m3) = 1x10-12 (mg/μm3), and 1 (N.s/m2) = 1 (kg/m.s) = 1 (mg/μm-s).
Air – ref. Mills[1], p. 842.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
Viscosity (kg/m-s): |
200 |
0.0197 |
1009 |
1.767 |
1.359E-05 |
300 |
0.0267 |
1005 |
1.177 |
1.843E-05 |
400 |
0.0331 |
1009 |
0.883 |
2.252E-05 |
500 |
0.0389 |
1017 |
0.706 |
2.633E-05 |
600 |
0.0447 |
1038 |
0.589 |
2.974E-05 |
800 |
0.0559 |
1089 |
0.442 |
3.589E-05 |
Alumina, Al2O3 – ref. MatWeb[2] 99.9% Al2O3, polycrystalline aluminum oxide.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
82.0 |
502 |
3960 |
298 |
46.0 |
753 |
3960 |
400 |
32.3 |
920 |
3960 |
500 |
24.2 |
1046 |
3960 |
600 |
18.9 |
1088 |
3960 |
800 |
13.0 |
1172 |
3960 |
Aluminum, Al (pure) – ref. Mills[1], pp. 827-830.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
237 |
798 |
2702 |
300 |
237 |
903 |
2702 |
400 |
240 |
949 |
2702 |
500 |
236 |
996 |
2702 |
600 |
231 |
1033 |
2702 |
800 |
218 |
1146 |
2702 |
Aluminum Gallium Arsenide, AlGaAs – ref. NSM[3] or Puchert[4] for Al0.4Ga0.6As.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
11.4 |
410 |
4400 |
Aluminum Gallium Nitride, Al0.4Ga0.6N – ref. Quay [26].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
25 |
594 |
4952 |
350 |
20 |
- |
- |
400 |
16 |
- |
- |
450 |
14 |
- |
- |
500 |
12 |
- |
- |
Aluminum Nitride, AlN – ref. Slack et. al.[5] for k(T) (in-plane), and NSM[3] for c and rho.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
780 |
- |
3255 |
300 |
319 |
600 |
3255 |
400 |
195 |
- |
3255 |
600 |
100 |
- |
3255 |
1000 |
49 |
- |
3255 |
Aluminum Silicon Carbide, AlSiC – ref. 19th IEEE SEMI-THERM[6], D. Shaddock et. al.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
180 |
721 |
2989 |
Benzocyclobutene, BCB – ref. MatWeb[2], Dow Chemical Co.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
297 |
0.29 |
1176 |
1000 |
318 |
0.31 |
- |
- |
339 |
0.32 |
- |
- |
Copper, Cu – ref. Mills[1], pp. 827-830.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
413 |
356 |
8933 |
300 |
401 |
385 |
8933 |
400 |
393 |
397 |
8933 |
500 |
386 |
412 |
8933 |
600 |
379 |
417 |
8933 |
800 |
366 |
433 |
8933 |
Diamond, CVD – The conductivity for diamond produced by CVD varies strongly with the concentration of bonded Hydrogen (Sukhadolau[7]). Room temperature values can range widely (800-2000 W/m-K for k-parallel). Since the room temperature anisotropy is less than 20%, the table below simply gives representative k-parallel (in plane) values. Specific heat and density are from NSM[3].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
1250 |
520 |
3515 |
360 |
1100 |
- |
3515 |
420 |
1020 |
- |
3515 |
480 |
950 |
- |
3515 |
Epoxy with Silver particles, Ag Epoxy – ref. 19th IEEE SEMI-THERM[6], D. Shaddock et. al.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
3.4 |
1254 |
3598 |
Fluorinert FC-77 – ref. Incropera[23], p. 262.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
Viscosity (kg/m-s): |
200 |
0.07056 |
893 |
2017 |
0.006371 |
275 |
0.06490 |
1011 |
1833 |
0.002155 |
300 |
0.06295 |
1051 |
1772 |
0.001386 |
320 |
0.06137 |
1082 |
1723 |
0.000972 |
350 |
0.05896 |
1129 |
1650 |
0.000657 |
370 |
0.05732 |
1161 |
1601 |
0.000632 |
Gallium Arsenide, GaAs – The data listed below is from Jordan's correlation[8]. A different correlation is given by Brice[9], resulting in conductivities which are 40% larger at 300 K. Specific heat and density are from MatWeb[2].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
64.6 |
- |
5316 |
300 |
41.5 |
325 |
5316 |
325 |
38.0 |
- |
5316 |
350 |
35.1 |
- |
5316 |
375 |
32.5 |
- |
5316 |
400 |
30.3 |
- |
5316 |
450 |
26.7 |
- |
5316 |
500 |
23.8 |
- |
5316 |
600 |
19.5 |
- |
5316 |
700 |
16.5 |
- |
5316 |
800 |
14.3 |
- |
5316 |
Gallium Nitride, GaN – There is a lot of scatter in the thermal conductivity data for GaN, presumably due to variations in the properties of the material. The temperature dependence appears to be at T-1.43 for some data; theoretically, we would expect it to go as T-1 or faster[10]. The dislocation density dependence is ~230.tanhm(5000000/dd), where m = 0.12 and dislocation density (dd) is in cm-2. The room temperature data vary from 150 – 210 W/m-K in ref[10] and [11]. The listed data starts from 150 at room temperature and scales it by T-1.43. A more comprehensive review is given in ref[12]. Specific heat and density are from NSM[3].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
268 |
- |
6150 |
300 |
150 |
490 |
6150 |
325 |
134 |
- |
6150 |
350 |
120 |
- |
6150 |
375 |
109 |
- |
6150 |
400 |
99 |
- |
6150 |
450 |
84 |
- |
6150 |
500 |
72 |
- |
6150 |
600 |
56 |
- |
6150 |
700 |
45 |
- |
6150 |
800 |
37 |
- |
6150 |
Germanium, Ge – ref. Ioffe Physico-Technical Institute website [3].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
90 |
280 |
5323 |
300 |
60 |
300 |
5323 |
400 |
40 |
310 |
5323 |
500 |
30 |
320 |
5323 |
800 |
20 |
340 |
5323 |
Gold, Au – ref. Mills[1], pp. 827-830.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
323 |
124 |
19300 |
300 |
317 |
129 |
19300 |
400 |
311 |
131 |
19300 |
500 |
304 |
133 |
19300 |
600 |
298 |
135 |
19300 |
800 |
284 |
140 |
19300 |
Grease, “TRA-GREASE” - Conductivities and densities are from a technical data sheet by Tra-Con, Inc.[13]. Specific heat values are estimates. Minimum thickness is unknown (expect at least 25 μm).
Grease, “TRA-GREASE GFC-G1” – ref. Tra-Con[13].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
2.0 |
800 |
2400 |
Grease, “TRA-GREASE GFC-H6” – ref. Tra-Con[13].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
4.0 |
800 |
2300 |
Indium – ref. Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
273 |
84 |
231 |
7310 |
373 |
76 |
247 |
7310 |
473 |
59 |
247 |
7310 |
“Kovar®” – ref. MatWeb[2], Carpenter Kovar® Alloy.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
17.3 |
439 |
8360 |
“Micro-faze®” thermal pads – Conductivities are from a technical data sheet by AOS Thermal Compounds[14]. Specific heat and density values are estimates based on the given composition information.
“Micro-faze® A4”, thermal pad – 4 mil (102 μm) thickness.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
4.5 |
820 |
2900 |
“Micro-faze® K”, thermal pad – 6 mil (152 μm) thickness.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
0.9 |
850 |
2600 |
Molybdenum, pure – ref. Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
173 |
145 |
209 |
10222 |
273 |
139 |
246 |
- |
373 |
135 |
259 |
- |
573 |
127 |
274 |
- |
Molybdenum Copper composites and laminates – the properties for various compositions of Molybdenum Copper are derived from two sources, a white paper by Ion Beam Milling[15] and a technical data sheet from Marketech Int.[16]. Conductivities and densities for the three higher-Mo-concentration composites comes from Ion Beam Milling, and the rest from Marketech Int. Specific heat values are calculated using Mills[1] values for the pure substances.
Molybdenum Copper, Mo85Cu15
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
155 |
271 |
10000 |
Molybdenum Copper, Mo80Cu20
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
165 |
278 |
9900 |
Molybdenum Copper, Mo75Cu25
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
175 |
285 |
9800 |
Molybdenum Copper, Mo70Cu30
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
195 |
291 |
9700 |
Molybdenum Copper, Mo60Cu40
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
210 |
305 |
9600 |
Molybdenum Copper, Mo50Cu50
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
235 |
318 |
9400 |
Molybdenum Copper, 1:1:1 Cu/Mo/Cu
Temperature (K): |
kx, ky (W/m-K): |
kz (W/m-K): |
c (J/kg-K): |
Density (kg/m3): |
300 |
305 |
225 |
341 |
9370 |
Molybdenum Copper, 1:2:1 Cu/Mo/Cu
Temperature (K): |
kx, ky (W/m-K): |
kz (W/m-K): |
c (J/kg-K): |
Density (kg/m3): |
300 |
275 |
205 |
318 |
9580 |
Nichrome, 77% Ni 20% Cr – ref. Touloukian[24]
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
273 |
12.6 |
432 |
8400 |
373 |
14 |
464 |
- |
473 |
15.7 |
490 |
- |
573 |
17.4 |
509 |
- |
Nickel, pure – ref. Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
173 |
113 |
357 |
8907 |
273 |
94 |
429 |
- |
373 |
83 |
465 |
- |
573 |
67 |
569 |
- |
Platinum, pure – ref. Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
173 |
73 |
123 |
21450 |
273 |
72 |
132 |
- |
373 |
72 |
135 |
- |
573 |
73 |
141 |
- |
Polysilicon, polycrystalline silicon film (undoped) – ref. Uma et al [29].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
138 |
700 |
2330 |
Polysilicon, SUMMiT V polycrystalline silicon film (doped) – interpolated using Phinney et al [30].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
56.8 |
700 |
2330 |
325 |
53.6 |
|
|
350 |
50.7 |
|
|
375 |
48 |
|
|
400 |
45.4 |
|
|
425 |
43 |
|
|
450 |
40.7 |
|
|
475 |
38.6 |
|
|
500 |
36.6 |
|
|
525 |
34.6 |
|
|
550 |
32.8 |
|
|
575 |
31.1 |
|
|
600 |
29.4 |
|
|
Sapphire, Al2O3 – ref. Kyocera[17] provides k(T), while c and rho are from Mills[1] p. 831.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
298 |
42 |
765 |
3970 |
373 |
32 |
- |
3970 |
573 |
20 |
- |
3970 |
773 |
13 |
- |
3970 |
Silicon, Si – ref. Glassbrenner and Slack[18] provide k(T), while c and rho are from [3].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
266 |
500 |
2330 |
300 |
156 |
670 |
2330 |
400 |
105 |
760 |
2330 |
500 |
80 |
820 |
2330 |
600 |
64 |
850 |
2330 |
700 |
52 |
- |
2330 |
800 |
43 |
880 |
2330 |
Silicon Carbide, SiC – Room-temperature conductivity is listed by Cree[19] and Muller 2001[20]. Temperature dependence correlations can be found in Muller 1998[21] (T-1.29) and Ayalew[22] (T-1.5). We use the 4H S.I. Cree room temperature data with the Ayalew temperature correlation. Specific heat and density are from MatWeb[2].
Temperature (K): |
kx, ky (W/m-K): |
kz (W/m-K): |
c (J/kg-K): |
Density (kg/m3): |
200 |
863 |
680 |
- |
3200 |
300 |
470 |
370 |
670 |
3200 |
325 |
417 |
328 |
- |
3200 |
350 |
373 |
294 |
- |
3200 |
375 |
336 |
265 |
- |
3200 |
400 |
305 |
240 |
- |
3200 |
450 |
256 |
201 |
- |
3200 |
500 |
218 |
172 |
- |
3200 |
600 |
166 |
131 |
- |
3200 |
700 |
132 |
104 |
- |
3200 |
800 |
108 |
85 |
- |
3200 |
Silicon Dioxide, SiO2, bulk silica amorphous glass – ref. Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
273 |
- |
700 |
- |
298 |
1.6 |
- |
2100 |
373 |
1.7 |
830 |
- |
573 |
- |
1020 |
- |
773 |
2.1 |
1110 |
- |
Silicon Dioxide, SiO2, quartz crystal – ref. Kaye & Laby[25]. z-direction is c-axis.
Temperature (K): |
kx, ky (W/m-K): |
kz (W/m-K): |
c (J/kg-K): |
Density (kg/m3): |
273 |
- |
- |
730 |
- |
298 |
6.5 |
11 |
- |
2600 |
373 |
5 |
8.3 |
860 |
- |
573 |
- |
- |
1060 |
- |
773 |
3.6 |
5 |
1200 |
- |
Silicon Dioxide, SiO2, thermally-grown thin film – ref. Burzo et al. [27]. c and r from Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
273 |
- |
700 |
- |
298 |
1.27 |
- |
2100 |
373 |
- |
830 |
- |
573 |
- |
1020 |
- |
773 |
- |
1110 |
- |
Silicon Dioxide, SiO2, ion beam sputtered thin film – ref. Burzo et al. [27]. c and r from Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
273 |
- |
700 |
- |
298 |
1.05 |
- |
2100 |
373 |
- |
830 |
- |
573 |
- |
1020 |
- |
773 |
- |
1110 |
- |
Silicon Germanium, 20% Si 80% Ge – alloy properties interpolated in the manner of Palankovski [28].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
13.9 |
374 |
4724 |
325 |
12.6 |
- |
4724 |
350 |
11.4 |
- |
4724 |
375 |
10.5 |
- |
4724 |
400 |
9.7 |
400 |
4724 |
425 |
9 |
- |
4724 |
450 |
8.3 |
- |
4724 |
475 |
7.8 |
- |
4724 |
500 |
7.3 |
420 |
4724 |
525 |
6.9 |
- |
4724 |
550 |
6.5 |
- |
4724 |
575 |
6.1 |
- |
4724 |
600 |
5.8 |
- |
4724 |
800 |
- |
448 |
4724 |
Silicon Germanium, 40% Si 60% Ge – alloy properties interpolated in the manner of Palankovski [28].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
10.2 |
448 |
4126 |
325 |
9.2 |
- |
4126 |
350 |
8.4 |
- |
4126 |
375 |
7.7 |
- |
4126 |
400 |
7.1 |
490 |
4126 |
425 |
6.6 |
- |
4126 |
450 |
6.1 |
- |
4126 |
475 |
5.7 |
- |
4126 |
500 |
5.3 |
520 |
4126 |
525 |
5 |
- |
4126 |
550 |
4.7 |
- |
4126 |
575 |
4.5 |
- |
4126 |
600 |
4.2 |
- |
4126 |
800 |
- |
556 |
4126 |
Silicon Germanium, 60% Si 40% Ge – alloy properties interpolated in the manner of Palankovski [28].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
10.4 |
522 |
3527 |
325 |
9.4 |
- |
3527 |
350 |
8.5 |
- |
3527 |
375 |
7.8 |
- |
3527 |
400 |
7.2 |
580 |
3527 |
425 |
6.7 |
- |
3527 |
450 |
6.2 |
- |
3527 |
475 |
5.8 |
- |
3527 |
500 |
5.4 |
620 |
3527 |
525 |
5.1 |
- |
3527 |
550 |
4.8 |
- |
3527 |
575 |
4.5 |
- |
3527 |
600 |
4.3 |
- |
3527 |
800 |
- |
664 |
3527 |
Silicon Germanium, 80% Si 20% Ge – alloy properties interpolated in the manner of Palankovski [28].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
15.2 |
596 |
2929 |
325 |
13.7 |
- |
2929 |
350 |
12.5 |
- |
2929 |
375 |
11.4 |
- |
2929 |
400 |
10.5 |
670 |
2929 |
425 |
9.7 |
- |
2929 |
450 |
9 |
- |
2929 |
475 |
8.4 |
- |
2929 |
500 |
7.9 |
720 |
2929 |
525 |
7.4 |
- |
2929 |
550 |
7 |
- |
2929 |
575 |
6.7 |
- |
2929 |
600 |
6.2 |
- |
2929 |
800 |
- |
772 |
2929 |
Silicon Nitride, Si3N4 – ref. MatWeb[2], Reaction-bonded ceramic.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
12 |
1100 |
2500 |
Silver, Ag – ref. Mills[1], pp. 828-830.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
200 |
420 |
225 |
10500 |
300 |
429 |
232 |
10500 |
400 |
425 |
239 |
10500 |
500 |
419 |
244 |
10500 |
600 |
412 |
250 |
10500 |
800 |
396 |
262 |
10500 |
Solder, Au80Sn20 – ref. 19th IEEE SEMI-THERM[6], D. Shaddock et. al.
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
55 |
150 |
15000 |
Titanium, pure – ref. Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
173 |
26 |
438 |
4508 |
273 |
22 |
511 |
- |
373 |
21 |
546 |
- |
573 |
19 |
586 |
- |
Tungsten, pure – ref. Kaye & Laby[25].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
173 |
188 |
68 |
19254 |
273 |
177 |
120 |
- |
373 |
163 |
133 |
- |
573 |
139 |
135 |
- |
Tungsten Copper composites – the conductivities and densities for various compositions of Tungsten Copper are derived from a technical data sheet from Marketech Int.[16]. Specific heat values are calculated using Mills[1] values for the pure substances.
Tungsten Copper, W90Cu10
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
185 |
157 |
16800 |
Tungsten Copper, W85Cu15
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
195 |
170 |
16400 |
Tungsten Copper, W80Cu20
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
210 |
183 |
15600 |
Tungsten Copper, W75Cu25
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
300 |
230 |
195 |
15000 |
Water, H2O – ref. Mills[1].
Temperature (K): |
Conductivity (W/m-K): |
Specific Heat (J/kg-K): |
Density (kg/m3): |
Viscosity (kg/m-s): |
275 |
0.55600 |
4217 |
1000 |
0.001700 |
300 |
0.61100 |
4178 |
996 |
0.000867 |
320 |
0.64100 |
4174 |
989 |
0.000584 |
330 |
0.65200 |
4178 |
985 |
0.000492 |
350 |
0.66900 |
4190 |
973 |
0.000379 |
373 |
0.68100 |
4212 |
958 |
0.000285 |
Basic Heat and Mass Transfer, Mills, A. F.; Richard D. Irwin, Inc.,1995.
MatWeb Material Property Data, www.matweb.com.
Ioffe Physico-Technical Institute website, www.ioffe.ru/SVA/NSM/Semicond in April 2008.
Transient Thermal Behavior of High Power Diode Laser Arrays, Puchert, R., et. al.; IEEE Transactions on Components, Packaging and Manuf. Tech. Pt. A, Vol 23, No. 1, pp. 95-100, 2000.
The Intrinsic Thermal Conductivity of AlN, Slack, G., Tanzilli, R., Pohl, R., and Vandersande, J.; J. Phys. Chem. Solids, Vol. 48, No. 7, pp. 641-647, 1987.
Advanced Materials and Structures for High Power Wide Bandgap Devices, Shaddock, D., et. al.; 19th IEEE SEMI-THERM, pp. 42-47, 2003.
Thermal Conductivity of CVD Diamond at Elevated Temperatures, Sukhadolau, A., et. al.; Diamond and Related Materials, Vol. 14, pp. 589-593, 2005.
Jordan, A.; J. Crystal Growth, Vol. 49, p. 631, 1980.
EMIS Data Reviews, Ser. No. 2, Brice, J.; London, INSPEC ISBN 0-85296-3238.
Accurate Dependence of Gallium Nitride Thermal Conductivity on Dislocation Density, Mion, C., Muth, J., Preble, E., and Hanser, D.; Applied Physics Letters, Vol. 89, 092123, 2006.
Thermal Modeling and Measurement of GaN-Based HFET Devices, Park, J., Shin, M., and Lee, C.; IEEE Electron Device Letters, Vol. 24, No. 7, pp. 424-426, 2003.
Thermal Conductivity of GaN, Kamatagi, M., Sankeshwar, N., and Mulimani, B.; Diamond and Related Materials, Vol. 16, pp. 98-106, 2007.
Tra-Con, Inc., 46 Manning Rd., Billerica, MA 01821; www.tra-con.com.
AOS Thermal Compounds, 22 Meridian Road, Suite #6, Eatontown, NJ 07724; www.aosco.com.
Laser Diode Heat Spreaders, Quagan, R; Ion Beam Milling, Inc., 1000 E. Industrial Park Dr., Manchester, NH 03109; www.ionbeammilling.com.
Marketech International, Inc., 107 Louisa Street, Port Townsend, WA 98368; www.marketech-heatsinks.com.
Kyocera International, Inc.; http://americas.kyocera.com/kicc/pdf/Kyocera%20Sapphire.pdf.
Glassbrenner, C., and Slack, G; Phys. Rev. (USA), Vol. 134, p. A1058, 1964.
Cree, Inc., 4600 Silicon Dr., Durham, NC 27703; data from www.cree.com in April 2008.
Progress in the Industrial Production of SiC Substrates for Semiconductor Devices, Müller, St.G., et. al.; Material Science and Engineering B80, pp. 327-331, 2001.
Materials Science Forum, Vols. 389-393, p. 623, 1998.
SiC Semiconductor Devices Technology, Modeling, and Simulation, Ayalew, T.; Ph.D. Thesis, Technische Universitat Wien, January 2004; www.iue.tuwien.ac.at/phd/ayalew.
Liquid Cooling of Electronic Devices by Single-Phase Convection, Incropera, F. P., John Wiley & Sons, Inc., 1999.
Touloukian, Y.S., Thermophysical Properties of Matter, IFI/Plenum, 1970. Online at www.cindasdata.com
Kaye & Laby Tables of Physical & Chemical Constants, 16th Edition, 1995. Online at www.kayelaby.npl.co.uk
Quay, R., Gallium Nitride Electronics, Springer-Verlag, Berlin. 2008.
Burzo, M. G., Komarov, P. L., Raad, P. E., “Thermal Transport Properties of Gold-Covered Thin-Film Silicon Dioxide,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 1, March 2003.
Palankovski, V., “Simulation of Heterojunction Bipolar Transistors,” Dissertation, Wien Technical University, 2000.
Uma, S., McConnell, A. D., Asheghi, M., Kurabayashi, K., Goodson, K. E., “Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers,” International Journal of Thermophysics, Vol. 22, No. 2, 2001.
Phinney, L. M., Kuppers, J. D., and Clemens, R. C., “Thermal Conductivity Measurements of SUMMiT V Polycrystalline Silicon,” SANDIA REPORT SAND2006-7112, November 2006.
CapeSym > SYMMIC
> Users Manual
> Table of Contents
© Copyright 2007-2024 CapeSym, Inc. | 6 Huron Dr. Suite 1B, Natick, MA 01760, USA | +1 (508) 653-7100