SYMMICTM Users Manual
Version 3.1.6
(TM) Trademark 2008 CapeSym, Inc.

CapeSym Table of Contents

MMIC Thermal Analysis

The compact 2-stage X-band power amplifier described by Klockenhoff et al [1] will be used to demonstrate thermal analysis of a MMIC with multiple FETs. This GaN-on-SiC MMIC is about 2.5 × 3.8 mm. The driver stage consists of a single FET of 12x125µm gate length, while the power stage consists of two FETs each with 24 × 125µm gate length. The MMIC is capable of delivering 16W of output power at 8GHz in a very small chip area with power-added efficiency of about 30%.


Figure 1. Two-stage X-band power amplifier PA0202B.

Thermal analysis of this amplifier with SYMMIC involves the following easy steps:

1. Configure a template for each device where power is dissipated

2. Create a layout to define MMIC dimensions and set device locations

3. Set dissipated power levels and run the simulation

Configure a Driver Stage FET

The first step in building a model of the MMIC, is to reconfigure the Generic FET Template to resemble the GaN-on-SiC driver stage transistor. Open the FET.xml template using the File menu Open... command, then access the Components... list from the Device menu and make the following changes to materials. Change the material for Substrate to SiC. Fill-in the source pad vias by changing the materials of Source Pad Via Hole and Source Pad Via Metal to SiC also. The source pads will be largely eliminated in the final model, so the source pad vias are filled with SiC, but the source vias are retained without changing their materials. Change the materials of Epi-layer 2, and Epi-layer 3 to GaN. The bottom epi-layer will represent the nucleation layer of AlN between SiC and GaN, so change Epi-layer 1 material to AlN. It may be helpful to take a slice through the center of the model to observe that the materials are correctly changed (Figure 2).

To create a FET similar to the actual device, make the following changes to the parameters:

Finger Width = 125 µm

Source Pad Length = 5 µm

Gate to Drain Distance = 2.1 µm

Gate Bus Width = 20 µm

Gate Length = 0.4 µm

Drain Bus Width = 20 µm

Gate to Source Distance = 1 µm

Epi-Layer 1 Thickness = 0.1 µm

Source Lengths = 49 µm

Epi-Layer 2 Thickness = 2.3 µm

Drain Lengths = 49 µm

Epi-Layer 3 Thickness = 0.027 µm

To model the 12-gate driver FET, set the Number of Gates to 6. (Only half the number of gates are modeled because the device is symmetric about a line through the center of the middle source.) The configured FET should now resemble Figure 2. Save the new device using Save device as... from the File menu. Give the new device the File name: “Stage1FET.xml” and Template title: “Stage 1 FET”.


Figure 2. The driver stage FET model sliced through y-axis.

Create the MMIC Layout


Figure 3. The Device Layout Table dialog of Create layout...

Starting from the Stage 1 FET device, use Create layout... on the File menu to place the device in a MMIC. In the Device Layout Table set Title to “2-Stage X-band Amplifier”, Length = 3800 µm and Width = 2500 µm. To position the device on the MMIC, change X Position to 660 µm and Y Position to 750µm. To include the whole device, check the Mirror box. Finally, set Rotation to “90° Counterclockwise”. Click the OK button to update the display using the new parameters. Then save the layout using Save layout as... and give the file a descriptive name such as “XbandAmp.xml”.

Configure a Power Stage Device Template

The power stage FETs in this amplifier are similar to the driver stage FET, except there are twice as many gates in the same area. So open the Stage1FET.xml file by selecting Open... from the File menu, and change only the following parameters:

Drain Lengths = 24 µm

Source Lengths = 24 µm

Number of Gates = 12


The power stage FET should now resemble Figure 4. Save the new device using Save device as... from the File menu. Give the new device the File name: “Stage2FET.xml” and Template title: “Stage 2 FET”.


Figure 4. The power stage FET device model.

Add Power Stage to the Layout


Figure 5. Editing the Device Layout Table to add the power stage FETs.

To add the power stage FETs to the MMIC, reopen the MMIC layout file (XbandAmp.xml) and use Edit layout... to access the Device Layout Table. Add new entries for the power stage by typing the name of the Stage 2 FET device file in the second and third entries of the table, as shown above (Figure 5). For the first Stage 2 FET set X Position = 2150 µm, Y Position = 220 µm, Rotation = “90° Counterclockwise”, and check the Mirror box. For the second Stage 2 FET, set X Position = 2150 µm, Y Position = 1310 µm, Rotation = “90° Counterclockwise”, and likewise check the Mirror box. Click the OK button to see the full amplifier model in the main window (Figure 6).

Set the Dissipation Levels

Finally, set the dissipated power on each of the FETs. Assuming the amplifier is being driven at full output power of 16W with a drain efficiency of about 37%, the power stage FETs dissipate about 4 W/mm while the driver stage FET dissipates 2 W/mm. Select the Stage 1 FET from the Device menu, and then access the Heat Generation... parameter list. Set the ON Power to 2 W/mm. Then Select each of the Stage 2 FETs in turn and set the ON Power to 4 W/mm. Assume that the heat sink attached to the backside of the MMIC maintains this surface at a constant 26.85°C, as defined by the default backside film parameters.


Figure 6. The completed 2-stage X-band amplifier MMIC model.

Save the new power settings to the device template files by selecting Save device(s) from the File menu. (Devices 2 and 3 will save to the same file which is fine because they are identical.) Save the completed amplifier layout by clicking on Save layout from the File menu.

Running a Thermal Simulation

The power amplifier MMIC is now ready for thermal analysis. However, if the device layout is symmetric with respect to the MMIC boundaries, some simulation time can be saved by simplifying the layout to half of the full MMIC. To do this, edit the layout and make the following changes (Figure 7). Remove the second power stage FET by erasing the filename in the third Device Template File box. Only use half of the driver stage FET by unchecking the Mirror box. Set the Width of the MMIC to zero, which will cause the width to be set to the smallest value that contains all of the devices. Click the OK button to obtain a model of approximately half the MMIC.




Figure 7. Modifying the layout to create a model of half the MMIC.

To simulate this model, select Run simulation... from the Solve menu. Simulation of the half MMIC model took less than 5 minutes on a Dell Precision T3600 Windows 7 workstation with an Intel Xeon E5-1260 running at 3.6 GHz having 4 cores with 32 Gb of shared RAM. The final solution contained temperatures at about 1.2 million nodes. Peak memory usage by the finite element direct solver was about 7.5 Gb.




Figure 8. Max. temperature plot of the half MMIC model.



Analyzing the Results

Figure 8 shows a plot of the hottest temperatures at each (x,y) position in the MMIC. The peak channel temperature of 206.5°C occurs in the middle of the power stage FETs. The effect of the driver stage FET is to elevate this peak channel temperature by only 6°C, as can be observed by repeating the simulation with only the power stage amplifier dissipating power. When the driver stage FET is simulated alone, its peak channel temperature is 66°C, but in the half device simulation the peak is at 101°C. So the temperature of the driver is significantly raised by the heat spreading from the power stage FETs.

It turns out that the FETs are not centered in the MMIC, so there is a certain amount of error in the half model analysis. To determine the magnitude of this error, simulation of the full MMIC (as shown in Figure 6) can be performed. Running this simulation does not require significantly more memory than the half-model MMIC because superposition of individual FETs is used to solve the MMIC. The final solution mesh contains about 2.5 million nodes, but the simulator decomposes the problem into independently solvable subproblems of less than 1.2 million nodes each. Since each of the three devices in the full MMIC model are individually simulated in two iterations, the total run time is increased to about 8.5 minutes.

The full MMIC simulation produces peak channel temperatures of 203.5°C and 202°C in the stage 2 FETs, and 100°C in the stage 1 FET. The power stage FET at the bottom (in Figure 1) has a slightly higher peak temperature than the one at the top, reflecting the real asymmetry of the MMIC. The full MMIC is not as hot as the half-model simulation because the backside surface area is under-represented in the half-model leading, incorrectly, to higher peak channel temperatures.

Snapshot of the Simulation Results

The following output, generated from a Snapshot... command in the Results menu, gives a summary of the temperatures in the solution, a listing of the parameter settings for all devices, and captures a screen shot of the main window display.




Snapshot of 2-stage X-band amplifier

Date: 4/25/2018 Time: 15:50:15

Template file: C:\TEMP\XbandAmp.xml

Entire layout covers X:[0,3800]µm Y:[0,2500]µm Z:[0,674.677]µm

Slice ranges are X:[-0.01,3800.01]µm Y:[-0.01,2500.01]µm Z:[-0.01,674.687]µm

Solution file: C:\TEMP\XbandAmp.rst

Entire solution covers X:[0,3800]µm Y:[0,2500]µm Z:[0,674.677]µm for time t=infinity (steady state)

Minimum temperature of 26.85 °C first found at x=0 µm, y=2500 µm, z=0 µm


Maximum temperature of 203.514 °C first found at x=2342.5 µm, y=652.35 µm, z=672.427 µm



From the Steady State Solution:

Device 1: Stage 1 FET
X location = [660,1045] µm
Y location = [750,1637] µm
Z location = [0,674.677] µm

 Component 

 Material 

 Tmin (°C) 

 Tmax (°C) 

 Tavg (°C) 

Source Cap Metal 

Au 

 69.9346

 83.6959

 77.5269

Drain Cap Metal 

Au 

 72.8571

 83.4305

 77.7653

Gate Bus 

Au 

 70.8823

 88.6393

 74.0018

Gates 

Au 

 82.559

 95.9335

 92.2116

Drain Bus 

Au 

 72.6896

 79.5428

 75.7421

Sources 

Au 

 70.0453

 85.5041

 77.8862

Drains 

Au 

 73.9196

 84.7809

 78.7066

Source Via in Epi-layer 3 

Au 

 71.627

 80.6629

 77.6432

Epi-layer 3 

GaN 

 70.0441

 100.424

 79.0172

Source Via in Epi-layer 2 

Au 

 71.5498

 80.6616

 77.629

Epi-layer 2 

GaN 

 69.9764

 100.319

 78.642

Source Via in Epi-layer 1 

Au 

 71.547

 80.5801

 77.6129

Epi-layer 1 

AlN 

 69.9751

 83.9857

 78.2657

Source Via Metal 

Au 

 69.0908

 80.5781

 74.5905

Source Via Holes 

Air 

 69.1019

 80.544

 74.4169

Substrate 

SiC 

 65.4095

 83.8629

 71.6844

Solder 

Au80Sn20 

 64.8949

 74.1091

 69.9169

Metal Shim 

W80Cu20 

 60.2322

 71.4401

 65.3901

Backside Adhesive 

Epoxy 

 26.85

 64.1211

 44.5442

Source Pad 

Au 

 69.7371

 71.4844

 70.7154

Source Pad Via Metal 

SiC 

 68.825

 71.1719

 69.824

Source Pad Via Hole 

SiC 

 68.8641

 71.0353

 69.7971

Peak temperature for this device is 100.424°C.

 Parameter 

 Value 

Number of Gates (in half device) 

6

Source 7 Length 

49 microns

Source 6 Length 

49 microns

Source 5 Length 

49 microns

Source 4 Length 

49 microns

Source 3 Length 

49 microns

Source 2 Length 

49 microns

Source 1 Length 

49 microns

Default Source Length 

49 microns

Source Cap Length Offset 

2 microns

Drain 7 Length 

49 microns

Drain 6 Length 

49 microns

Drain 5 Length 

49 microns

Drain 4 Length 

49 microns

Drain 3 Length 

49 microns

Drain 2 Length 

49 microns

Drain 1 Length 

49 microns

Default Drain Length 

49 microns

Drain Cap Length Offset 

2 microns

Source Pad Via Length 

4.9 microns

Source Pad Via Metal 

2 microns

Source Pad Via Width 

50 microns

Source Via Width 

70 microns

Source Via Length 

15 microns

Source Via Metal 

2 microns

Gate T Metal 

0 (Off or On)

Gate to Source Distance 

1 microns

Gate Length 

0.4 microns

Gate to Drain Distance 

2.1 microns

Finger Width 

125 microns

Source Pad to Boundary 

100 microns

Source Pad Length 

5 microns

Drain Bus to Boundary 

100 microns

Drain Bus Width 

20 microns

Drain Bus to Source 

10 microns

Source Bridge 

0 (Off or On)

Gate Bus to Source 

10 microns

Gate Bus Width 

20 microns

Gate Bus to Boundary 

100 microns

Backside Adhesive Thickness 

50 microns

Metal Shim Thickness 

500 microns

Solder Thickness 

20 microns

Substrate Thickness 

100 microns

Epi-Layer 1 (bottom) Thickness 

0.1 microns

Epi-Layer 2 (middle) Thickness 

2.3 microns

Epi-Layer 3 (top) Thickness 

0.027 microns

Ohmic Metal Thickness 

0.25 microns

Gate Metal Thickness 

1 microns

Drain Cap Metal Thickness 

1 microns

Source Cap Metal Thickness 

2 microns

Gate T Metal Thickness 

1 microns

Source Bridge Metal Thickness 

2 microns

Segment 4 Width 

0.5 microns

Segment 3 Width 

0.5 microns

Segment 2 Width 

0.5 microns

Segment 1 Width 

0.125 microns

Percent Power on Segment 4 

0 percent

Percent Power on Segment 3 

0 percent

Percent Power on Segment 2 

90 percent

Percent Power on Segment 1 

10 percent

Backside Film Temperature (K) 

300 Kelvin

Backside Film Coefficient (W/um^2.K) 

1 W/um^2.K

Cycle Start 

0 seconds

OFF Duration 

5e-05 seconds

OFF Power (W/mm) 

0 W/mm

ON Duration 

2.5e-05 seconds

ON Power (W/mm) 

2 W/mm

Mesh Refinement 

1 scalar

 

 

 

 

Solver Nonlinear Iterations 

On 

Relative Tolerance 

0.0001 

Iterate Superposition 

On 

Pardiso Solver 

On 

Stefan-Boltzmann 

5.67e-20 

Device 2: Stage 2 FET

X location = [2150,2535] µm
Y location = [220,1112] µm
Z location = [0,674.677] µm

 Component 

 Material 

 Tmin (°C) 

 Tmax (°C) 

 Tavg (°C) 

Source Cap Metal 

Au 

 107.247

 158.739

 139.527

Drain Cap Metal 

Au 

 108.364

 157.284

 135.921

Gate Bus 

Au 

 106.623

 162.503

 121.33

Gates 

Au 

 135.719

 190.579

 174.372

Drain Bus 

Au 

 107.661

 137.76

 122.977

Sources 

Au 

 107.925

 162.947

 141.152

Drains 

Au 

 117.091

 160.517

 142.272

Source Via in Epi-layer 3 

Au 

 111.658

 155.623

 143.277

Epi-layer 3 

GaN 

 107.913

 203.514

 144.733

Source Via in Epi-layer 2 

Au 

 111.237

 155.607

 143.108

Epi-layer 2 

GaN 

 107.352

 203.191

 142.742

Source Via in Epi-layer 1 

Au 

 111.219

 154.645

 142.919

Epi-layer 1 

AlN 

 107.339

 158.985

 140.785

Source Via Metal 

Au 

 99.0715

 154.616

 124.242

Source Via Holes 

Air 

 99.1114

 154.504

 123.238

Substrate 

SiC 

 89.6278

 158.648

 109.005

Solder 

Au80Sn20 

 88.0375

 117.929

 101.672

Metal Shim 

W80Cu20 

 77.4425

 106.461

 87.0327

Backside Adhesive 

Epoxy 

 26.85

 80.3684

 53.1902

Source Pad 

Au 

 105.934

 112.104

 109.812

Source Pad Via Metal 

SiC 

 98.8215

 111.419

 103.264

Source Pad Via Hole 

SiC 

 98.8914

 110.372

 103.075

Peak temperature for this device is 203.514°C.

 Parameter 

 Value 

Number of Gates (in half device) 

12

Source 7 Length 

24 microns

Source 6 Length 

24 microns

Source 5 Length 

24 microns

Source 4 Length 

24 microns

Source 3 Length 

24 microns

Source 2 Length 

24 microns

Source 1 Length 

24 microns

Default Source Length 

24 microns

Source Cap Length Offset 

2 microns

Drain 7 Length 

24 microns

Drain 6 Length 

24 microns

Drain 5 Length 

24 microns

Drain 4 Length 

24 microns

Drain 3 Length 

24 microns

Drain 2 Length 

24 microns

Drain 1 Length 

24 microns

Default Drain Length 

24 microns

Drain Cap Length Offset 

2 microns

Source Pad Via Length 

4.9 microns

Source Pad Via Metal 

2 microns

Source Pad Via Width 

50 microns

Source Via Width 

70 microns

Source Via Length 

15 microns

Source Via Metal 

2 microns

Gate T Metal 

0 (Off or On)

Gate to Source Distance 

1 microns

Gate Length 

0.4 microns

Gate to Drain Distance 

2.1 microns

Finger Width 

125 microns

Source Pad to Boundary 

100 microns

Source Pad Length 

5 microns

Drain Bus to Boundary 

100 microns

Drain Bus Width 

20 microns

Drain Bus to Source 

10 microns

Source Bridge 

0 (Off or On)

Gate Bus to Source 

10 microns

Gate Bus Width 

20 microns

Gate Bus to Boundary 

100 microns

Backside Adhesive Thickness 

50 microns

Metal Shim Thickness 

500 microns

Solder Thickness 

20 microns

Substrate Thickness 

100 microns

Epi-Layer 1 (bottom) Thickness 

0.1 microns

Epi-Layer 2 (middle) Thickness 

2.3 microns

Epi-Layer 3 (top) Thickness 

0.027 microns

Ohmic Metal Thickness 

0.25 microns

Gate Metal Thickness 

1 microns

Drain Cap Metal Thickness 

1 microns

Source Cap Metal Thickness 

2 microns

Gate T Metal Thickness 

1 microns

Source Bridge Metal Thickness 

2 microns

Segment 4 Width 

0.5 microns

Segment 3 Width 

0.5 microns

Segment 2 Width 

0.5 microns

Segment 1 Width 

0.125 microns

Percent Power on Segment 4 

0 percent

Percent Power on Segment 3 

0 percent

Percent Power on Segment 2 

90 percent

Percent Power on Segment 1 

10 percent

Backside Film Temperature (K) 

300 Kelvin

Backside Film Coefficient (W/um^2.K) 

1 W/um^2.K

Cycle Start 

0 seconds

OFF Duration 

5e-05 seconds

OFF Power (W/mm) 

0 W/mm

ON Duration 

2.5e-05 seconds

ON Power (W/mm) 

4 W/mm

Mesh Refinement 

1 scalar

 

 

 

 

Solver Nonlinear Iterations 

On 

Relative Tolerance 

0.0001 

Iterate Superposition 

On 

Pardiso Solver 

On 

Stefan-Boltzmann 

5.67e-20 

Device 3: Stage 2 FET

X location = [2150,2535] µm
Y location = [1310,2202] µm
Z location = [0,674.677] µm

 Component 

 Material 

 Tmin (°C) 

 Tmax (°C) 

 Tavg (°C) 

Source Cap Metal 

Au 

 105.168

 157.477

 138.292

Drain Cap Metal 

Au 

 106.408

 156.099

 134.703

Gate Bus 

Au 

 104.651

 161.238

 120.162

Gates 

Au 

 133.589

 189.172

 173.024

Drain Bus 

Au 

 105.702

 136.631

 121.807

Sources 

Au 

 105.849

 161.668

 139.915

Drains 

Au 

 115.086

 159.313

 141.032

Source Via in Epi-layer 3 

Au 

 109.552

 154.356

 142.035

Epi-layer 3 

GaN 

 105.837

 202.049

 143.485

Source Via in Epi-layer 2 

Au 

 109.131

 154.34

 141.867

Epi-layer 2 

GaN 

 105.279

 201.728

 141.501

Source Via in Epi-layer 1 

Au 

 109.113

 153.362

 141.678

Epi-layer 1 

AlN 

 105.266

 157.749

 139.55

Source Via Metal 

Au 

 97.0237

 153.333

 123.065

Source Via Holes 

Air 

 97.0655

 153.231

 122.065

Substrate 

SiC 

 87.2093

 157.413

 107.842

Solder 

Au80Sn20 

 85.6873

 116.891

 100.548

Metal Shim 

W80Cu20 

 75.5987

 105.421

 86.018

Backside Adhesive 

Epoxy 

 26.85

 79.7849

 52.728

Source Pad 

Au 

 103.855

 111.781

 108.6

Source Pad Via Metal 

SiC 

 96.7651

 111.096

 102.069

Source Pad Via Hole 

SiC 

 96.8373

 110.062

 101.88

Peak temperature for this device is 202.049°C.

 Parameter 

 Value 

Number of Gates (in half device) 

12

Source 7 Length 

24 microns

Source 6 Length 

24 microns

Source 5 Length 

24 microns

Source 4 Length 

24 microns

Source 3 Length 

24 microns

Source 2 Length 

24 microns

Source 1 Length 

24 microns

Default Source Length 

24 microns

Source Cap Length Offset 

2 microns

Drain 7 Length 

24 microns

Drain 6 Length 

24 microns

Drain 5 Length 

24 microns

Drain 4 Length 

24 microns

Drain 3 Length 

24 microns

Drain 2 Length 

24 microns

Drain 1 Length 

24 microns

Default Drain Length 

24 microns

Drain Cap Length Offset 

2 microns

Source Pad Via Length 

4.9 microns

Source Pad Via Metal 

2 microns

Source Pad Via Width 

50 microns

Source Via Width 

70 microns

Source Via Length 

15 microns

Source Via Metal 

2 microns

Gate T Metal 

0 (Off or On)

Gate to Source Distance 

1 microns

Gate Length 

0.4 microns

Gate to Drain Distance 

2.1 microns

Finger Width 

125 microns

Source Pad to Boundary 

100 microns

Source Pad Length 

5 microns

Drain Bus to Boundary 

100 microns

Drain Bus Width 

20 microns

Drain Bus to Source 

10 microns

Source Bridge 

0 (Off or On)

Gate Bus to Source 

10 microns

Gate Bus Width 

20 microns

Gate Bus to Boundary 

100 microns

Backside Adhesive Thickness 

50 microns

Metal Shim Thickness 

500 microns

Solder Thickness 

20 microns

Substrate Thickness 

100 microns

Epi-Layer 1 (bottom) Thickness 

0.1 microns

Epi-Layer 2 (middle) Thickness 

2.3 microns

Epi-Layer 3 (top) Thickness 

0.027 microns

Ohmic Metal Thickness 

0.25 microns

Gate Metal Thickness 

1 microns

Drain Cap Metal Thickness 

1 microns

Source Cap Metal Thickness 

2 microns

Gate T Metal Thickness 

1 microns

Source Bridge Metal Thickness 

2 microns

Segment 4 Width 

0.5 microns

Segment 3 Width 

0.5 microns

Segment 2 Width 

0.5 microns

Segment 1 Width 

0.125 microns

Percent Power on Segment 4 

0 percent

Percent Power on Segment 3 

0 percent

Percent Power on Segment 2 

90 percent

Percent Power on Segment 1 

10 percent

Backside Film Temperature (K) 

300 Kelvin

Backside Film Coefficient (W/um^2.K) 

1 W/um^2.K

Cycle Start 

0 seconds

OFF Duration 

5e-05 seconds

OFF Power (W/mm) 

0 W/mm

ON Duration 

2.5e-05 seconds

ON Power (W/mm) 

4 W/mm

Mesh Refinement 

1 scalar

 

 

 

 

Solver Nonlinear Iterations 

On 

Relative Tolerance 

0.0001 

Iterate Superposition 

On 

Pardiso Solver 

On 

Stefan-Boltzmann 

5.67e-20 



Conclusion

The SYMMIC template-based thermal simulator allows high fidelity thermal analysis of a new MMIC design to be completed in half an hour using standard PC hardware. The total setup time for this example MMIC was about 20 minutes starting from a generic device template. Run time of the steady-state analysis of the full MMIC required a total runtime of only about 10 minutes on a 64-bit workstation.

References

[1] H. Klockenhoff, R. Behtash, J. Würfl, W. Heinrich, G. Tränkle, “A Compact 16 Watt X-Band GaN-MMIC Power Amplifier,” Microwave Symposium Digest, 2006 IEEE MTT-S International, pp. 1844-1849.



CapeSym > SYMMIC > Users Manual > Table of Contents

© Copyright 2007-2024 CapeSym, Inc. | 6 Huron Dr. Suite 1B, Natick, MA 01760, USA | +1 (508) 653-7100